Skip to content

L41 Frequency Domain Analysis

Spectral Analysis

  • Decomposing a TS into \(\sin\) and \(\cos\) functions of different frequencies.
  • Appropriate when you observe cycle dynamics (periodicity, cyclicity)
    • Infectious disease data (periodicity of immunity)
    • Business cycles (periodicity of cycles)
  • Decompose stationary TS \(\{ Y_{t} \}\) into combination of sinusoids1 with uncorrelated random coefficients
\[ Y_{t} = \phi_{1}\sin(A_{1}) + \phi_{2}\cos(A_{2}) \]

where \(A_{1}\) and \(A_{2}\) are frequencies. We have to identify those frequencies which are particularly important (strong).

  • Till now, time domain approach
    • Regression on past values of TS (\(y_{t-i}\)) and shocks (\(e_{t}\))
  • Regression approach considers regression on sinusiods
    • Spectral density function is required

Trigonometry refresher

\[ \sin A \pm \sin B = 2 \sin \dfrac{A\pm B}{2} \cos \dfrac{A\mp B}{2} \]
\[ \cos A + \cos B = 2 \cos \dfrac{A+ B}{2} \cos \dfrac{A- B}{2} \]
\[ \cos A - \cos B = -2 \sin \dfrac{A+ B}{2} \sin \dfrac{A- B}{2} \]
  • \(\sin k\pi = 0\) for all \(k = \pm 1,\pm 2,\dots\)
  • \(\cos k\pi = (-1)^{|k-1|}|\) for all \(k = \pm 1,\pm 2,\dots\)
  • \(\sin(-A) = -\sin A\)
  • \(\cos (-A) = \cos A\)

Fourier and Inverse Fourier Transforms

  • DFT of a function \(h(t)\) for \(t \in \{ \dots, -1, 0, 1,\dots \}\) is
\[ H(\omega) = \sum_{t=-\infty}^{\infty} h(t)e^{ -i \omega t } \quad (-\pi \leq \omega \leq \pi) \]

Inverse Fourier Transform of \(H(\omega)\) is given by,

\[ h(t) = \dfrac{1}{2\pi}\int_{-\pi}^{\pi} H(\omega) e^{ -\omega t } \, d\omega \]

Properties

If \(h(t) = h(-t)\)

$$
H(\omega) = h(0) + \sum_{t=1}^{\infty} h(t) (e^{ -\omega t } + e^{ i \omega t})
$$
or

\[ H(\omega) = h(0) + 2 \sum_{t=1}^{\infty} h(t) \cos \omega t, (-\pi \leq \omega \leq \pi) \]

Thus, \(h(t) = \dfrac{1}{\pi} = \int_{0}^{\pi}H(\omega) \cos(\omega t)\ d\omega\)

Notation

\[ y_{t} = R \cos t(\omega t + \nu) + u_{t} \]
  • \(\omega:\) frequency of periodic variation \((0 \leq \omega \leq 2\pi)\)
  • \(R:\) amplitude of variation
  • \(\nu\) phase
  • \(\{ u_{t} \}:\) purely random process

If \(R, \nu\) are constants

\[ E(y_{t} ) = R \cos (\omega t + \nu) \]
  • Assume, \(R\) has 0 mean and finite variance, or \(\mu \sim Uniform(0,2\pi)\) then \(E(y_{t})=0\). Thus the process is stationary.

Practical applications of Fourier Transform

  1. Signal procesing
    • Audio processing
      • Noise Reduction
      • Equalization (adjust the balance of frequency components)
      • Compression (represent audio signals more compactly by prioritizing significant frequency components)
    • Image processing
      • Edge detection (detect outlier)
      • Image compression (JPEG uses DCT)
  2. Communications
    • Modulation
    • Demodulation
    • Spectrum Analysis
  3. Physics and Engineering
    • Wave Analysis
    • Optics
    • Structural Analysis

which is \(t\)-dependent and thus becomes non-stationary.


  1. Sine and cosine function together are called sinusoids