Lecture 19 Fundamental of Probability Theory

  • Basic Definition and Rules
    • Probability function assigns a real number to each outcome
    • Range of probability
    • Equiprobability rule \(P(A_{i}) = \dfrac{1}{n}\)
    • Mutually exclusive: only one of them can happen at a time
    • "Or": \(P(A \cup B) = P(A) + P(B)\)
    • "Everything": \(\sum P(A_{i}) = 1\)
    • "Not": \(P(\neg A) = 1- P(A)\)
    • Independent: occurrence of one doesn't affect the occurrence of another
    • "And": \(P(A\cap B) = P(A) \times P(B)\)
  • Conditional Probability
    • Given that some other thing happens
    • \(P(A | C) = \dfrac{P(A\cap B)}{P(B)}\)
  • The General AND Rule
    • \(P(A|B) \times P(B) = P(B|A) \times P(A)\)
  • Independence Conditions
    1. \(P(A|B) = P(A)\)
    2. \(P(B|A) = P(B)\)
    3. \(P(A\cap B) = P(A) \times P(B)\)
  • Total Probability Rule
    • \(P(D) = P(D \cap B) \cup [D \cap \neg B])\)
    • \(P(D)=P(D \cap B) + P(D \cap \neg B)\)
    • and \(P(D \cap B) = P(D|B) \times P(B)\)
    • \(\implies\) \(P(D) = P(D|B) \times P(B) + P(D|\neg B) \times P(\neg B)\)
  • Bayes' Rule or Bayes' Theorem ^96fb64
    • \(P(B|D) = \dfrac{P(D|B)\times P(B)}{P(D)}\)
    • And use the total probability rule to calculate: \(P(D)\)