
146 6 Categorical Data

myRegions$Region<-NULL
myLabelling<-c("0il","Coal","Gas", "Renewable Energies", "Nuclear\~

nenergy")

Create chart

radial.plot(myRegions[2:3,], start=1,grid.left=T, labels=.
myLabelling, rp.type="p",main="", line.col=c(myC1i, myC2), poly.
.col=c(myC1,myC2), show. grid=T, radial.lim=c(0,55), lwd=8)

legend("bottomleft",c("OECD", "Asia"), pch=15, col=c(myC1,myC2), btyn
="n",cex=1.5)

Titling

mtext (line=3, "Energy mix: OECD and Asia by comparison", cex=2.5,.

adj=0, family="Lato Black")
mtext(line=1,"All values in percent", cex=1.5, adj=0, font=3)
mtext (side=1, line=2, "Source: German Federal Agency for Civic ~

Education: keyword ‘’Enegiemix’ [energy mix], www.bpb.de [~
website in German]",cex=1.05, adj=1, font=3, outer=T)

dev.off()

The structure of the script does not essentially differ from the previous one.

Instead of one, two columns of the data record are transferred as data. This is also

the reason for the specification of two colours. The colours should be transparent.

6.3 Chart Tables

Here, “chart tables” refers to illustration types in which the arrangement of infor-

mation has table character. Strictly speaking, this pragmatic definition also applies

to bar charts, but there are a series of illustration forms that differ significantly

from the form of bar charts and therefore justify their own category. We start with

suggestions for two variants of so-called Gantt-charts, then follow with examples

for a bump chart (Sect. 6.3.3), a heat map (Sect. 6.3.4), a mosaic plot (Sect. 6.3.5)

and two examples for tree maps (Sect. 6.3.7 and 6.3.8).

Gantt charts are named after their inventor Henry L. Gantt, who developed this

illustration form for visualisation of the individual operational steps within projects.

The individual project steps are reflected by row as the span from the planned start

to the planned end time of the project section. Additional optional elements include

dependencies in the form of connecting lines between different spans as well as

horizontal brackets for task groups. A common Gantt chart looks like Fig. 6.1 (built

with LaTeX package gantt.sty by Martin Kumm).

6.3 Chart Tables 147

Fig. 6.1 Simplified Gantt chart

For the creation of Gantt charts, R provides e.g. the gantt.chart function within

the plotrix package. Here we present a possibility of creating Gantt charts with the

functions lines() and points().

6.3.1 Simplified Gantt Chart

Project plan
01/03/2012 30/09/2012

l J

Analysis
Meetings 70% 01/03/12 - 07/03/12

Talking with customers 60% 14/03/12 - 14/04/12

Documentation 47% 01/04/12 - 21/04/12

@ End of analysis

Design
Database design ma 45% 22/04/12 - 15/05/12

Software design 0% — 15/05/12-07/06/12

Interface design PY 0% 07/06/12-07/07/12

Specification || 0% 07/07/12- 21/07/12

@ Endofesign

Development
System module Po 0% 22/04/12-07/07/12

Integration P| 0% 07/07/12 - 31/07/12

Test preperation i 0% 31/07/12 - 05/08/12

Erld of deviopment

Testing
System testing Ld 0% 07/07/12 - 31/07/12

Documentation of testing mm 0% 31/07/12- 14/08/12

Corrrection lao 0% 14/08/12 - 31/08/12

@ End of testing

@ Presentation

Review iz 0% 15/09/12 - 30/09/12

today

planning status: 15/08/12

148 6 Categorical Data

| Millestore: when Group what front to Quran who done = PAN PAG (AG from | (AG fo Persons
Analyses.

Veprticggs O1.03,12 O7 02.12 6 Serenity a) ao 20 OLLI OF.04, 42 1

Tammi with Cueebomers: E4.03,12 14M 1e i) Schemite a aD Pa 14.02.12 104 12 1

Dacumentation LO4.12 2104.12 20 Sthemite aT io a 1

hh Endof sala. 1

Cees

Dotabate design 22.08.12 15.05.17 2) Dent a5 1 Oo 3

foltware design BS.r8.12 OF 06.12 2) Weyer 0 100 o 1

interface design OF O42 Ov 07.42 10 lenper a too Oo z

SoetiPcation OF .OF7,12 21.07.12 24 blilher 0 1 a 1

12 End of esign J

1 Sevelooment

System module aF.07, 1 Hi Aleneer o 100 a 2

Integration OT id SLOP 24 ilieyper 4 100 o z

Tent BrNperateon oO 25.08 il Deri Q a a 02.0% LE ORB 2
17 tnd of dindopment

Testing

System tesiing: OF. SLOT Ja Dent o 5} St 15.07.12 ehO7 ad
Documentagion of testing VOT 14.08.12 4 Sehenite q Loo

ed [end of tesdling:

1

i
Correction 240 13 31.08.12 P Ronee 0 Loo a 1

71.06.12 1

2) Presentation OF.09.12
a i

Review $5.04, 12 B08 2 5 Sehenita 4 1oo o

Fig. 6.2 Data for project planning

The figure is based on the “classic” Gantt chart, but with a few variations. The

basis is an XLSX spreadsheet in which data were collected (Fig. 6.2).

The figure groups the different tasks of the fictional project into “Analysis”,

“Design”, “Development” and “Test” blocks. Each group is assigned its own colour.

On top of that, there is a final point “Review”, which does not belong to any group.

Within each group, three to four tasks are defined and their duration is shown as a

bar. The already completed part (the “completed” column in the XLS spreadsheet)

is indicated by grey colour, while the part that is still due is shown in the colour

of the respective group. Milestones are marked with red dots and are explained in

a text. With projects, an important and unfortunately often neglected topic is the

involvement of clients. Their involvement should appear in a project planning chart.

One possibility is “superimposing” the task bars with a frame marking the duration

of client participation. Usually, this will not span the entire duration of a task. Data

are taken from the “CL_from” and “CL_until” columns of the XLS spreadsheet.

Given that the graphic of the project plan serves as an overview, no detailed list of

time periods is necessary; for these, references to the spreadsheet can be added if

required. The figure is therefore limited to illustration of the start and end points, and

to a line marking the current date “today”. On the right side, the already completed

parts of the tasks are identified in percent, and their start and end points are given.

On the far side, the weight of the task is visualised. To do this, the product of the

duration and number of persons per task is shown as a bubble. Due to the overlap for

extensive tasks, these are best made transparent. Data are fictional and were entered

into an XLS spreadsheet for illustration purposes.

pdf_file<-"pdf/tablecharts_gantt_simplified.pdf"
c0<-"black"; ci<-"green"; c2<-"red"; c3<-"blue"; c4<-"orange"; ~

c5<-"brown"

myColour_done<-"grey"
myColour<-c(c0,c1,c1,c1,c0,c0,c2,c2,c2,c2,c0,c0,c3,Cc3,c3,c0,c0,~.

c4,c4,c4,c0,c0,c5)

source("scripts/inc_gantt_simplified.r")

6.3 Chart Tables 149

dev.off()

and

inc_gantt_simplified.r

library(gdata)

cairo_pdf(bg="grey98", pdf_file, width=11.7, height=8. 26)

par (lend=1, omi=c(0.25,1,1,0.25),mai=c(1,1.85,0.25,2.75) , family="~.

Lato Light", las=1)
mySchedule<-read.xls("mydata/projectplanning.xlsx", encoding="~.

latini")
n<-nrow(mySchedule)
myScheduleData<-subset (mySchedule, nchar (as.character (mySchedule$~

From))>0)
myBegin<-min(as.Date(as.matrix(myScheduleData[,c(’from’,’to’)]))n

myEnd<-max(as.Date(as.matrix(myScheduleData[,c(’from’,’to’)])))

attach(mySchedule)

plot(from,1:n, type="n",axes=F, xlim=c(myBegin, myEnd), ylim=c(n,1))
for (i in 1:n)

if (nchar(as.character(Group[i]))>0)

{
text (myBegin-2,1,Group[i],adj=1, xpd=T, cex=1.25)

else if (nchar(as.character (what[i]))>0)

{
X1<-as.Date(mySchedule[i, ’from’])

x2<-as.Date(mySchedule[i, ‘to’])

x3<-x1+((x2-x1)*mySchedule[i, ‘done’]/100)
x<-c(x1, x2)
x_done<-c(x1, x3)
y<-c(i,i)
segments(myBegin, i, myEnd, i, col="grey")
lines(x, y, lwd=20, col=myColour [i])
points (myEnd+90, i, cex=(mySchedule[i, ’Persons’]*mySchedule[i, ’~

Durance’])**@.5, pch=19, col=rgb(110,110,110,50,~.

maxColorValue=255), xpd=T)

if (x3-x1i>1) lines(x_done, y, lwd=20, col=myColour_done)
if (mySchedule[i, ’PAG’] > 0)

{
x4<-as.Date(mySchedule[i, ’AG_from’])

x5<-as.Date(mySchedule[i, ’AG_to’])
X_ag<-c(x4, x5)
rect(x4,1i-0.75, x5,i+@.75, lwd=2)

}
text (myBegin-2,i,what[i],adj=1, xpd=T, cex=0.75)

text (myEnd+25,1, paste(done[i],"%",sep="_ "),adj=1, xpd=T, cex=0.75)

text (myEnd+35, i, paste(format (x1, Format="%d/%m/%y"), "-", Format (x2.
,format="%d/%m/%y"), sep="_ "),adj=0, xpd=T, cex=0.75)

i

150 6 Categorical Data

else # Milestone

{
x3<-as.Date(mySchedule[i, ‘when’])
myHalf<-(myEnd-myBegin) /2

if (x3-xi<myHalf)

{
points(as.Date(mySchedule[i, ’when’]),i, pch=18, cex=1.25, col="red"~

)
text(as.Date(mySchedule[i, ‘when’])+5,i,Milestone[i],adj=0, xpd=T,~

cex=0.75)
} else

{
points(as.Date(mySchedule[i, ’when’]),i, pch=18, cex=1.25, col="red"~

)
text(as.Date(mySchedule[i, ‘when’])-5,1,Milestone[i], adj=1, xpd=T,~

cex=0.75)

}
}
}
axis(3, at=c(myBegin, myEnd), labels=c(format (myBegin, format="%d/%m~.

/%Y"'), Format (myEnd, format="%d/%n/%Y"')))
myToday<-as.Date("15.08.2012", "%d.%m.%Y")
abline(v=myToday)

mtext ("today",1, line=0, at=myToday)

Titling

mtext("Project plan",3, line=2,adj=0, cex=2.25, family="Lato Black".
,outer=T)

mtext(paste("planning status: ",format(myToday, format="%d/%n/%y"~s.
),sep=""),1, line=4, at=myEnd+20, cex=1.25, font=3)

rect(myBegin-36, n+5, myBegin, n+4, xpd=T, lwd=2)
text(myBegin-35, n+4.5, "Box: Client",xpd=T, adj=0)

The script first defines the colours for the individual groups (cO to c5). Subse-

quently, the colouring of the individual bars are defined as elements of the colour

vector. For ease of use, this was done manually. However, data could also be

imported from a data table. First, rows containing date information are extracted

from the XLSX spreadsheet, and the first and last occurring dates are identified. In

the next step, the chart is scaled (not drawn) using plot() and the group name is

written to the left of the start using text(). If the column “what” contains an entry,

then the time periods and the completed part are determined, and time periods are

plotted. On the right border, a point (a “bubble’’) is plotted to indicate the size of

the project part, i.e. the duration multiplied by the number of people involved. Since

we are using the radius as a variable, we have to use the square root to ensure that

area enlargement is proportionally correct. In the next step, the completed parts

are plotted over the time periods. If the project client (PCL) has to be involved, a

rectangle is drawn around the bars, with length and circumference taken from the

data. Then follow the labelling of the rows at the beginning (with the “what”) and

at the end with the percentage of the completed task part and the time period of the

6.3 Chart Tables 151

task. If there is no entry in the from and to columns, but in the when column, then it

is a “milestone”. In those cases, they are plotted as points and labelled. Finally, an

axis is plotted at the upper margin.

6.3.2 Simplified Gantt Chart: Colours by People

Project plan
01/03/2012 30/09/2012

l J

Analysis
Meetings 70% 01/03/12 - 07/03/12

Talking with customers 60% 14/03/12 - 14/04/12

Documentation 47% 01/04/12 - 21/04/12

@ End of analysis

Design
Database design ma 45% — 22/04/12- 15/05/12

Software design | 0% — 15/05/12-07/06/12

Interface design PY 0% 07/06/12-07/07/12

Specification i 0% 07/07/12-21/07/12

@ Endofesign

Development
System module Po 0% 22/04/12-07/07/12

Integration | 0% 07/07/12- 31/07/12

Test preperation I 0% 31/07/12 - 05/08/12

End of devlopment

Testing
System testing Ld 0% 07/07/12 - 31/07/12

Dacumentation of testing [| 0% 31/07/12 - 14/08/12

Corrrection a 0% 14/08/12 - 31/08/12

@ Endof testing

@ Presentation

Review im 0% — 15/09/12- 30/09/12
today

= P.Schmitz @ A.Dent & A.Meyer © D. Miller

planning status: 15/08/12

The figure essentially matches the previous one. Only the colouring is different

here: it is based on the people involved in the project. Data are fictional and were

entered into an XLS spreadsheet for illustration purposes.

pdf_file<-"pdf/tablecharts_gantt_simplified_who.pdf"
FO<-"black"; fi<-"green"; f2<-"red"; f3<-"blue"; f4<-"yellow"
farbe_erl<-"grey"
farbe<-c(f0, f1, f1, 1, f0, f0, f2, f3, f3, £4, f0, f0, f3, f3, f2, FO, FO, f2,~

fi, f3, f0, FO, f1)
source("scripts/inc_gantt_simplified.r")

legend(anfang-40,n+2,c("P. Schmitz","A. Dent", "A. Meyer", "D. MUx

lier"), pch=15, col=c(f1, f2, 3,4), bty="n", cex=1.1, horiz=T,~

xpd=T)
dev.off()

In the script, we only have to slightly redefine the colours for this case, and add

a legend with the names of the people involved.

152

6.3.3 Bump Chart

6 Categorical Data

Revenue development of Fortune 500 enterprises

in billion Euro
2002

177.3 General Motors

Ford Motor

International Business Machines

Hewlett-Packard

Time Warner
Pfizer

Dell
United Parcel Service

PepsiCo

Intel
20.1 Microsoft

Walt Disney

Coca-Cola

2011

General Motors 135.6

Ford Motor
Hewlett-Packard

International Business Machines

Pfizer
Microsoft
Dell
PepsiCo

United Parcel Service

Intel

Walt Disney

Coca-Cola

Time Warner 26.9

Source: money.cnn.com/magazines/fortune/fortune5O0/

6.3 Chart Tables 153

The figure uses the bumpchart() function from the plotrix package by Jim Lemon.

It would also be possible to directly use the matplot() function and add labels

right-justified on the left side and left-justified on the right side using text(); the y-

coordinates for the function would then simply be the revenue numbers. Depending

on the value combination, however, labels could then overlap. The advantage of Jim

Lemon’s solution is that, in such cases, labels are automatically moved vertically by

the appropriate amount.

About the figure: a bump chart usually compares two or more points in time for

multiple numerical parameters; characteristic labels for these parameters are written

at the ends of the connecting lines. There are two variants: one uses only the ranks

and plots these on an ordinal scale; the other plots the actual values on an interval

scale. In this example, revenue development of the Fortune 500 enterprises in the

USA between 2002 and 2011 is compared. Here, the use of the actual values is a

lot more informative than their ranks. It should be noted though, that the labels of

individual points might overlap, depending on the data. In such cases, the labels

should be attached with minimal, but identical line spacing, but in such a way that

at least rank is maintained. On the left side, this is the case for all enterprises whose

revenue is less than Hewlett-Packard’s. As an example, Microsoft’s revenue has

been highlighted here. The data were first taken from a CNN website by year and

copied into an XLS spreadsheet; a new sheet was used for each year. The data

were then reorganised using the sqldf package and then saved as a binary R file

fortune_revenue.RData.

library(sqldf)
f2011<-read.xls(“data/fortune100.xlsx”, sheet = 1)
f2010<-read.xls(“data/fortune100.xlsx”, sheet = 2)
f2009<-read.xls(“data/fortune100.xlsx”, sheet = 3)

f2008<-read.xls(“data/fortune100.xlsx”, sheet = 4)

f2007<-read.xls(“data/fortune100.xlsx”, sheet = 5)
f2006<-read.xls(“data/fortune100.xlsx”, sheet = 6)
f2005<-read.xls(“data/fortune100.xlsx”, sheet = 7)
f2004<-read.xls(“data/fortune100.xlsx”, sheet = 8)
f2003<-read.xls(“data/fortune100.xlsx”, sheet = 9)
f2002<-read.xls(“data/fortune100.xlsx”, sheet = 10)

total<-sqldf(“select enterprise from f2011

union select enterprise from f2010

union select enterprise from f2009

union select enterprise from f2008
union select enterprise from f2007
union select enterprise from f2006
union select enterprise from f2005
union select enterprise from f2004
union select enterprise from f2003
union select enterprise from f2002”)

x<-sqldf (“select

total.enterprise,
Ff2002.revenue r2002

F2002.revenue r2003

154 6 Categorical Data

f2002.revenue r2004
f2002.revenue r2005
f2002.revenue r2006

f2002.revenue r2007

Ff2002.revenue r2008

F2002.revenue r2009

f2002.revenue r2010

f2002.revenue r2011

from total

left join f2002 on total.enterprise=f2002.enterprise
left join f2003 on total.enterprise=f2003.enterprise
left join f2004 on total.enterprise=f2004.enterprise
left join f2005 on total.enterprise=f2005.enterprise
left join f2006 on total.enterprise=f2006.enterprise

left join f2007 on total.enterprise=f2007.enterprise

left join f2008 on total.enterprise=f2008.enterprise
left join f2009 on total.enterprise=f2009.enterprise
left join f2010 on total.enterprise=f2010.enterprise
left join f2011 on total.enterprise=f2011.enterprise
“)

row.names(x)<-x$enterprise
x$enterprise<—-NULL
y<-t(x)
save(y, file="fortune_revenue.RData.”)

The saved data can now be used in the script:

pdf_file<-"pdf/tablecharts_bumpchart.pdf"

cairo_pdf(bg="grey98", pdf_file, width=9, height=12)

par (omi=c(0.5,0.5,0.9,0.5),mai=c(0,0.75,0.25,0.75) , xpd=T, family=.
"Lato Light", las=1)

library(plotrix)
library(gdata)

Import data and prepare chart

zi<-read.xls("myData/bumpdata.xlsx", encoding="latini")
rownames (z1)<-z1i$name
zi$name<-NULL
myColours<-rep("grey",nrow(z1)); myLineWidth<-rep(1, nrow(z1))
myColours[5]<-"skyblue"; myLineWidth[5]<-8
par (cex=1.1)

Create chart

bumpchart (z1, rank=F, pch=18, top. Llabels=c("2002","2011"), col=~
myColours, lwd=myLinewidth, mar=c(2,12,1,12),cex=1.1)

Titling

6.3 Chart Tables 155

mtext("Revenue development of Fortune 500 enterprises",3, line~x
=1.5,adj=0, family="Lato Black", outer=T, cex=2.1)

mtext("Source: money.cnn.com/magazines/fortune/fortune500/",1,~
line=0, adj=1, cex=0.95, font=3, outer=T)

Other elements

axis(2,col=par("bg"),col.ticks="grey81", lwd.ticks=0.5, tck=-~
0.025, at=c(min(z1$r2002), max(z1i$r2002)),c(round(min(zi$~
r2002)/1000, digits=1), round(max(zi$r2002)/1000, digits=1)~

))
axis(4,col=par("bg"),col.ticks="grey81", lwd.ticks=0.5, tck=-~

0.025, at=c(min(zi$r2011), max(zi$r2011)),c(round(min(z1i$~
r2011)/1000, digits=1), round(max(zi$r2011)/1000, digits=1)~

))

mtext("in billion Euro",3, font=3, adj=0, cex=1.5, line=-0.5, outer=T..

)

par(family="Lato Black")
axis(2,col=par("bg"),col.ticks="grey81",col.axis="skyblue", lwd.~

ticks=0.5, tck=-0.025, at=z1i[5,1], round(zi[5,1]/1000, digits.

=1))
axis(4,col=par("bg"),col.ticks="grey81",col.axis="skyblue", lwd.~

ticks=0.5, tck=-0.025, at=z1[5,2], round(zi[5,2]/1000, digits.

=1))

dev.off()

In the script, we need the plotrix package for the bump chart. Data are read from

a XLSX spreadsheet, and row names are created from the name column. Then,

the name column is deleted so that the data frame only comprises the data to be

plotted. A vector with identical values is defined for each colour and line width, and

individually modified for the 5th data frame. Margins are set with the mar parameter

within the bumpchart() function. At the end, we add two axis labels on both the left

and right, stating the range of values. The first call sets the minima and maxima, the

second the value for Microsoft.

6.3.4 Heat Map

About the figure: A heat map is a two-dimensional matrix, in which the cells

are coloured depending on their value. It may be a table with individual data or

aggregated values. There is no rule stating how the rows or columns should be

arranged for illustration. If the order of both rows and columns is random or does not

contain required information, then a cluster method can be used to group “similar”

rows and/or columns. Additionally, dendrograms on the sides can show the grouping

at different levels. Another variant is sorting the data. If comparable statistics can

be done for the columns, then sorting by these is possible as well. An example for

156 6 Categorical Data

this is school grades. The figure shows a heat map of (fictional) school grades of a

(fictional) class. Here, the best pupils are arranged at the top and the subjects with

the best grades on the left. This gives a good impression of the grade distribution

within a class. Of course, a comparison with one or several other classes would be

an obvious option.

Heat map of school grades within a fictional class

SS et rou
SS SSS EE Marco Schroeder

| | Paul Theiss

| | Alexander Fuerst 4

| Uwe Kuhn

| Michael Fuchs 3

L | Maik Keller

| || Dirk Schmitt 2

Foo} Ralph Bieber

aM Jan Bosch 1

in Antje Moench

| Christian Kastner

L | Sarah Eggers

| | Bernd Brauer

| Monika Adler

| Kathrin Schreiner

a Alexander Schneider

| | Marina Hoover

PN) Michael Baer

— Janina Himmel

Ws René Fruehauf

| Sabine Burger

| Ralph Freeh

| | Stefanie Kuefer

| Doreen Mauer

a Heike Schulz

DO Niklas Rothschild
| | Tom Fruehauf

NN Sarah Sankt

mn

wy

P
P
P

8

o
e

A
y
d
e
s
8
0
a
5

a
n

6

Fictional data, names generated with de.fakenamegenerator.com

6.3 Chart Tables 157

Data were generated with the help of the http://de.fakenamegenerator.com site,

and entered into an XLS spreadsheet.

pdf_file<-"pdf/tablecharts_heatmap. pdf"
cairo_pdf(bg="grey98", pdf_file, width=7, height=8)

library(RColorBrewer)
library (pheatmap)
par (mai=c(0.25,0.25,0.25,1.75),omi=c(0.25,0.25,0.75,0.85) , family.

="Lato Light", las=1)

Import data and prepare chart

myGrades<-read.xls("myData/grades.xlsx", encoding="latini")
x<-as.matrix(myGrades[,2:13])
rownames (x)<-myGrades$names
x<-x[order(rowSums(x)),]
x<-x[, order (colSums(x))]

Create chart

plot .new()
pheatmap (x, col=brewer.pal(6, "Spectral"),cluster_rows=F, cluster_~

cols=F, cellwidth=25, cellheight=14, border_color="white",~

fontfamily="Lato Light")

Titling

mtext("Heat map of school grades within a fictional class",3,~
line=1,adj=0.2, cex=1.75, family="Lato Black", outer=T)

mtext("Fictional data, names generated with de.fakenamegenerator..

.com",1, Line=-1, adj=1, cex=0.85, font=3, outer=T)

dev.off()

About the script: The standard package stats provides a heatmap() function that

can be used to create the corresponding charts. However, there is only limited

potential to modify their appearance. The gplots package provides an extended heat

map function called heatmap.2(); however, it uses the layout() function and can

therefore not be used in a panel illustration defined with mfcol or mfrow. For this

reason, we use the pheatmap() function from the package of the same name by Raivo

Kolde for our purposes. Here, cell height and width can be defined individually. We

forgo the use of dendrograms on the sides (cluster_rows=F, cluster_cols=F). Data

are read from the grades.xlsx file, then row names are created from the “names”

column and the column is deleted. Data are then sorted first by row and then by

column, so that the best pupils are shown at the top and the best grades on the left.

Then follows the call of the pheatmap() function. Before that, plot.new() has to be

called though, since pheatmap() is not a high-level function from R’s traditional

base graphic environment, but is based on grid.

158 6 Categorical Data

6.3.5 Mosaic Plot (Panel)

1000 songs to hear before you die
Guardian 1000 Songs Distribution

1910s-50s 1960s 1970s 1980s 1990s 2000s 1910s-50s 1960s 1970s 1980s 1990s 2000s

Heartbreak a
Heartbreak

Life and death

Life and death

os Emmi

momeene = l i a a a a

Love

Party songs

People and places i

Politics and protest _—_ ae

Source: www.stubbornmule.net

s oO

About the figure: in a mosaic plot, cells of a contingency table are shown in the

form of rectangles, with the size of the rectangle corresponding to the frequency

of the cell. This is generally also possible for multi-dimensional data and offers

Statistics specialists great help for gaining insights. Without prior knowledge, this

illustration form requires some getting used to, but is useful in individual cases.

It should be noted that the area varies in two dimensions and not independently,

as is the case with a “bubble plot’, a scatter plot with different size dots. Here,

increasing one length will cause a shift of the subsequent elements. We are using

an example from Sean Carmody that is also used in Wikipedia. The principle of

constructing a two-dimensional mosaic plot is this: first, the rectangle of the entire

tables is split in vertical slices, so that column width corresponds to the relative

frequencies of the margin distribution of the column variable. In our case, this is

the distribution of the number of songs within the individual epochs. In a second

step, the area for each epoch is cut horizontally in such a way that the heights

correspond to the relative frequencies of the row variable (in our case: the topics)

in the respective epochs. In a two-dimensional case, the result is therefore a stacked

100% bar chart, in which column width corresponds to the relative frequencies of

a second categorical variable. In my opinion, such a representation is especially

6.3 Chart Tables 159

useful if an independency table is set next to it for comparison, i.e. one that assumes

identical frequencies for the row variable in those categories. The data are taken

from a list that was compiled by The Guardian. A CSV file with the data is available

on http://www.stubbornmule.net.

pdf_file<-"pdf/tablecharts_mosaicplot_1x2.pdf"

cairo_pdf(bg="grey98", pdf_file, width=10, height=6)

par (mai=c(0.25,0.0,0.0,0.25),omi=c(0.5,0.5,1.25,0.5), las=1, mfcolx

=c(1,2),family="Lato Light", las=1)
library(RColorBrewer)

Import data and prepare chart

data<-read.csv("myData/1000.csv",as.is=c(F,T,F,1T,1),sep=";")

data$DEKADE<-floor(data$YEAR/10) * 10
data$KDEKADE<-paste(data$DEKADE, "s",sep="")
data$KDEKADE[data$DEKADE < 1960]<-"1910s-50s"
tab<-table(data$KDEKADE, data$THEME)
utab<-chisq.test(tab)

Create chart

mosaicplot (utab$expected, col=brewer.pal(7, "Accent"),main="",~
border=par ("bg"))

mosaicplot (tab, col=brewer.pal(7, "Accent"),main="", border=par ("bgx.
"))

Titling

mtext("1000 songs to hear before you die",3, line=3,adj=0, cexx.
=1.5,family="Lato Black", outer=T)

mtext ("Guardian 1000 Songs Distribution", 3, line=1.5, adj=0, cex.

=0.9, font=3, outer=T)

mtext("Source: www.stubbornmule.net",1, line=1, adj=1.0, cex=0.85,.

Font=3, outer=T)
dev.off()

In the script, we add an extra column DECADE to the period name in the data

for illustration purposes, and an “s” is appended; then the dates before 1960 are

summarised. For the mosaic plot, a table is generated from the data. We use the

chis.test function from the stats package for the illustration of the “independency

table”. The mosaicplot() function is part of the graphics package, which means

that we do not have to load an additional package. The left mosaic plot shows the

data under the assumption of independence, the right one the distribution of the

actual data. In both cases, we use a qualitative Brewer palette and a margin-free

background. No other settings have to be made. Extended features are provided by

the vcd package, with which numerous variants of mosaic plots are possible. These

graphics are based on grid though, not on the traditional graphic.

160 6 Categorical Data

6.3.6 Balloon Plot

Titanic - Passenger and Crew Statistics

Balloon Plot for Age, Sex by Class, Survived

Age = Child Adult

Sex Male Female Male Female

Class Survived

1st Yes 5 1 57 140) = |203

No O 0 118 4 122

2nd Yes 11 13 14 80 118

No O 0 154 13 |167

3rd Yes 13 14 715 76 178

No 35 17 387 89 {528

Crew Yes O 0 192 20 = |212

No O 0 670 3 673

64 45 1667 425 2201

Area is proportional to Number of Passengers Source: R library gplots

About the figure: The name “balloon plot” is slightly misleading, as it is

frequently used to describe a scatter plot with variable dot size (a “bubble chart’).

Here, it refers to a specific, graphically supplemented variant of contingency tables

that has to date occasionally been used in biostatistics or mineralogy. The illustration

form was implemented into R with the plots package by Gregory R. Warnes. The

data are an example data frame frequently employed in R, the Titanic passengers,

classified by sex, age (children and adults), their on-board status (1st, 2nd, 3rd class

or crew) and their survival of the sinking (yes, no). The figure shows the data in the

form of a bivariate frequency table, where the rows contain the status on the first

level and the survival on the second level, the columns the age on the first level and

the sex on the second level. In addition to the numbers showing cell and margin

frequencies, cell frequencies are highlighted with a dot whose size is proportional

to the number. The colour of the dots differentiates the survivors from the drowned.

6.3 Chart Tables 161

Margin frequencies are reflected in the header rows and columns as bar or column

portions of 100% in the respective row or column. This type of illustration gives a

better impression of the distribution than a “naked” contingency table would. Data

are taken from the “Titanic” data frame supplied with R.

pdf_file<-"pdf/tablecharts_ballonplot.pdf"
cairo_pdf (bg="grey98", pdf_file, width=9, height=9)

par (omi=c(0.75,0.25,0.5,0.25) ,mai=c(0.25,0.55,0.25,0), family="~

Lato Light", cex=1.15)
library(gplots)

Import data and prepare chart

data(Titanic)

myData<-as.data.frame(Titanic) # convert to 1 entry per row x.

format

attach(myData)
myColours<-Titanic
myColours[,,, "Yes"]<-"LightSkyBlue"
myColours[,,, "No"]<-"plumi"
myColours<-as.character (as.data.frame(myColours)$Freq)

Create chart

balloonplot (x=list (Age, Sex),main="",
y=list(Class=Class,
Survived=gdata: :reorder. factor (Survived, new. order=cx,

(2,1))),
z=Freq, dotsize=18,

zlab="Number of Passengers",
sort=T,
dotcol=myColours,
show. zeros=T,

show.margins=T)

Titling

mtext("Titanic - Passenger and Crew Statistics",3, line=0, adj=0, x.

cex=2, family="Lato Black", outer=T)
mtext("Balloon Plot for Age, Sex by Class, Survived",3, line=-2, x.

adj=0, cex=1.25, font=3, outer=T)

mtext("Source: R library gplots",1, line=1, adj=1.0, cex=1.25, font.
=3, outer=T)

mtext("Area is proportional to Number of Passengers",1, line=1,~.
adj=0, cex=1.25, font=3, outer=T)

dev.off()

The script is the example from the documentation of the ballonplot() function, in

which only the colour selection and dot size have been adjusted. Data were loaded

from the data frame “Titanic” that is supplied with R and converted into a data

frame (the original data are an object of table type). The original table colours are

used for the creation of the colours for the balloon plot. Data from the data frame are

162 6 Categorical Data

transferred to the function in the form of a list. We choose 18 as point size. Headings

are created as before.

6.3.7 Tree Map

Tree maps are useful for the presentation of proportions. The New York Times

used tree maps for the presentation of Obama’s 2012 budget. A neat example with

German data can be found on http://bund.offenerhaushalt.de. Here, a breakdown of

the German federal budget can be found in tabular form and as a tree map, for both

the entire budget and the individual categories. Data can be exported in JSON or

RDF format.

Federal Budget 2011
Shares of Expenditure

Bundesministerium

der

Allgemeine Verteidigung

Finanzverwaltung
Bundesministerium

fur

Arbeit

und

Soziales

Bundesministerium

Bundesschuld CG
TYE Iy:|

PTT]

Forschung
Source: bund.offenerhaushalt.de

About the figure: A tree map shows the attribute of a cardinally scaled variable

as nested rectangles. The size and order of the rectangles are calculated so that, with

preset outer dimensions, the large rectangle is completely filled and the areas of

the individual rectangles correspond to the size of the variables. There are different

algorithms for calculation of the rectangles that each optimise different aspects of

the subdivision. Mostly, a procedure is used that produces the maximum number

of rectangles with aspect ratio approximating 1. Since the outer margins are always

set, even hierarchies can be shown with tree maps: a created rectangle can again be

considered the outer margin for a new subdivision of the attribute. The first example

shows the shares of individual expenditures of the federal budget in 2011 as a tree

map, which clearly depicts the unequal distribution of expenditures. The different

6.3 Chart Tables 163

colours are only used to separate the elements from each other. Labelling to the last

element is not possible. Data are available on http://bund.offenerhaushalt.de, and

were copied and pasted into an XLS spreadsheet.

pdf_file<-"pdf/tablecharts_treemap. pdf"
cairo_pdf(bg="grey98", pdf_file, width=11.69, height=7.5)

par(omi=c(0.65,0.25,1.25,0.75) ,mai=c(0.3,2,0.35,0), family="~

Lato Light", las=1)

par (omi=c(0.55,0.25,1.15,0.75),family="Lato Light", las=1)

library (treemap)
library(gdata)

Import data

federalbudget<-read.xls("mydata/federalbudget .xlsx",sheet=1, ~

encoding="latini")

Create chart

plot .new()
treemap(federalbudget, title="", index="Title", type="index", vSize=x,

"Expenditures", palette="YlOrRd", aspRatio=1.9, inflate...
labels=T)

Titling

mtext("Federal Budget 2011",3, line=3.8, adj=0, cex=2.2, family="~

Lato Black", outer=T)
mtext("Shares of Expenditure",3, line=2.3,adj=0,cex=1.5, outer=T,x~

font=3)
mtext("Source: bund.offenerhaushalt .de",1, line=1, adj=1.0, cex.

=0.95, outer=T, font=3)

dev.off()

In the script, we use the treemap() function from the package of the same

name by Martijn Tennekes, which essentially provides this exact function. Just like

pheatmap(), the treemap() function is based on grid. If used within the frames of a

traditional graphic approach, we first have to use plot() to define a figure, in which

treemap() can then be called and finally a separate legend can be drawn. First, the

variable for which a tree map is to be created has to be transferred to the function

using index. The specification of multiple variables that are then hierarchically

nested (see Sect. 6.3.8) is also possible. The colour of the tree map is set using

type=index. Here, index means that the colours are based on the index variable. In

our case, the colour does not carry information; the hues from the Brewer palette

only serve to make the individual blocks as distinguishable as possible. The relative

size of the rectangles is defined by the variable set using vSize. The command

inflate.labels=T enlarges the labels of the rectangles so that they reach both sides

of the rectangles. The aspRatio parameter is explicitly stated, but the dimensions of

the figure also affect the aspect ratio.

164 6 Categorical Data

6.3.8 Tree Maps for Two Levels (Panel)

Population and Gross National Income
Size: population - Colour: GNI per capita. Atlas method (current US $), 2010

North

America

m low m middie @ high

Within Continent: Country Level
Size: population - Colour: GNI per capita. Atlas method (current US $), 2010

=a DEU
NGA zaF RUS IDN PAK en 7

syd NOY 4 edt eet-1= M0) -4- 16m
UGA AGO MWI ZMB ZWE

BGD JPN PHL SDN BFASENTUNGINGEN [TA 5 SWE AUT CHE
MAR Sp) ead BGR SYK FIN

Ni Ae ee Fam
ee Tere WY Reet tole

NLD CZE HUN BLR

Pt fala
oo

apy interes

ARG
NPL YEMLKAsyYR MEX fe

TUR BRA perven
Wi As) KAZ ISR HKG TJK arene

CAN LAO sep Ti (oie BOL rae | a meray Ey Une: pelle GTMwo: COL ecu,

VNM KOR AFG IRQ

m low m middie @ high

Source: data.wordlbank.org

About the figure: If two hierarchical levels are depicted, then the presentation of

the tree map can become confusing. In such cases, it makes sense to initially plot

the first level in a panel, and the second level in a second chart arranged like the

first level. This is shown here using an example of data on population size and gross

national income. Data for individual countries are available, but are first shown at

the level of continents. The second chart shows the distribution of population size

in the individual countries, but not in the order of countries, but first ordered by

6.3 Chart Tables 165

continent and within those nested by population size. As an additional variable, the

gross national income (GNI) was colour-coded in three classes. Data are provided

online by the World Bank. Data were filtered for the tree map examples used in this

book, connected to the continent data and saved as a binary R file hnp.RData. The

file is available for download on the book’s website.

pdf_file<-"pdf/tablecharts_treemap_2a_inc.pdf"
cairo_pdf(bg="grey98", pdf_file, width=11.69, height=7.5)

par (omi=c(0.65,0.25,1.25,0.75) ,mai=c(0.3,2,0.35,0),family="Lato ~.

Light", las=1)
library (treemap)
library(RColorBrewer)

Read data and prepare chart

load("myData/hnp.RData")
myData<-subset (daten, daten$gni>0)
attach(myData)

popgni<-pop*gni
myData$popgni<-popgni
myContinents<-aggregate(cbind(pop,popgni) ~ kontinent,data=.

myData, sum)

kgni<-—myContinents$popgni/myContinents$pop
myContinents$kgni<-kgni
kkgni<-cut(kgni, c(0, 5000, 10000, 100000))
levels(kkgni)<-c("low", "middle", "high")
myContinents$kkgni<-kkgni
myContinents$nkkgni<-as .numeric(kkgni)

Create chart and other elements

plot(1:1, type="n",axes=F)

treemap(myContinents, title="",index="kontinent", vSize="pop",~
vColor="kgni", type="value", palette="Y1OrBr", aspRatio=2.5,~
position. legend="none", inflate.labels=T)

legend(0.35,0.6, levels(kkgni) [1:3], cex=1.65, ncol=6, border=F, bty=~
"n",fill= brewer.pal(5,"YlOrBr")[3:5], text.col="black", xpdn
=NA)

Titling

mtext("Population and Gross National Income",3, line=2,adj=0, cex.

=2.4,outer=T, family="Lato Black")

mtext("Size: population - Colour: GNI per capita. Atlas method (~
current US $), 2010",3,1line=0, adj=0, cex=1.75, outer=T, font.
=3)

mtext("",1, line=1, adj=1.0, cex=1.25, outer=T, font=3)

dev.off()

166 6 Categorical Data

In the script, contrary to the previous example, two separate figures are created

that are then connected in LaTeX. For the first figure, data from the hnp data frame

are filtered so that only the countries with an entry for gni are kept. Then the product

of pop and gni is calculated and added to the data frame. Then a second data frame

continents is created by aggregation, in which the population and the product of

population and the GNI are added up. This gives us the correct continent-related

GNIs called cgni. From this, we create three classes “low”, “middle” and “high”

called ccgni. Lastly, for the tree map, we require this as a numerical variable nccgni.

As in the previous example, we have to call plot() to define the figure prior to plotting

the tree map, since treemap() is based on grid. The tree map graphic is then plotted

with the function of the same name. In contrast to the previous example, we set

type=value, since the colour represents the attribute of an additional variable in this

case. This variable is defined using vColor=cgni. We also specify that no legend be

created, since we want to draw that separately at the end. The size of the rectangle is

defined with vSize=pop. We then draw a legend using the legend() function. When

doing this, we have to be careful to use the correct colours from the selected Brewer

palette, as the treemap() function apparently assumes a fiver palette. The second tree

map for the countries within the continents is created essentially like the first one.

The only differences are that we define two variables using index=c(“continent”,

“is03”), because we want to keep the first level (continents) as order criteria. We also

have to use fontsize.labels=c(0.1,20) to set specific font sizes for the two levels: 0.1

makes the labels of the first level invisible. The result is a tree map of all countries,

but sorted within their continents.

pdf_file<-"pdf/tablecharts_treemap_2b_inc.pdf"

cairo_pdf(bg="grey98", pdf_file, width=11.69, height=7.5)

par (omi=c(0.65,0.25,1.25,0.75),mai=c(0.3,2,0.35,0),family="Lato ~

Light", las=1)
library (treemap)
library(RColorBrewer)

Daten einlesen und Grafik vorbereiten

load("myData/hnp.RData")

myData<-subset (daten, daten$gni>0)
attach(myData)
kgni<-cut(gni,c(0, 40000, 80000))
levels(kgni)<-c("Llow", "middle", "high")
myData$kgni<-kgni
myData$nkgni<-as.numeric(kgni)

Grafik definieren und weitere Elemente

plot(1:1, type="n",axes=F)

treemap(myData, title="", index=c("kontinent","iso3"), vSize="pop"~
,VColor="nkgni", type="Value", palette="Blues", aspRatio=2.5,~
fontsize.labels=c(0.1,20),position. legend="none")

6.3 Chart Tables 167

legend(0.35,0.6, levels(kgni)[1:3], cex=1.65, ncol=3, border=F, bty="~
n",fill= brewer.pal(9, "Blues")[7:9], text.col="black", xpd=~
NA)

Betitelung

mtext("Within Continent: Country Level",3, line=2, adj=0, cex=2.4,x

outer=T, family="Lato Black")
mtext("Size: population - Colour: GNI per capita. Atlas method (~

current US $), 2010",3, line=0, adj=0, cex=1.75, outer=T, font.
=3)

mtext("Source: data.wordlbank.org",1, Line=1, adj=1.0, cex=1.25,~

outer=T, font=3)
dev.off()

The last step is to combine the two tree maps into one figure. To do that, both are

sequentially embedded into LaTeX. Finally, the LaTeX embedding:

\documentclass {article}
\usepackage[paperheight=26.7cm, paperwidth=21cm, top=Ocm, left=0.

cm, right=O0cm, bottom=O0cm] {geometry}
\usepackage {color }
\usepackage [abs] {overpic }
\definecolor {myBackground }{rgb}{0.9412,0.9412,0.9412}
\pagecolor {myBackground }
\begin{document }

\pagestyle {empty}

\begin{center }

\begin{overpic}[scale=0.70, unit=imm]|{../pdf/tablecharts_treemap_~.
2a_inc.pdf}

\put (60,128) {}
\end{overpic}
\begin{overpic}[scale=0.70, unit=imm]|{../pdf/tablecharts_treemap_~.

2b_inc. pdf}
\put (60, 28) {}
\end{overpic }

\end{center }

\end{document }

